
J .  Fluid Mech. (1979). vol. 94, part 3, pp .  433-452 

Printed in  areat Britain 
433 

Blockage correction with a free surface 

By KWANG JUNE BAI 
David W. Taylor Naval Ship Researoh and Development Center, 

Bethesda, Maryland 20084 

(Received 26 April 1978 and in revised form 20 February 1979) 

A simple analysis shows that with a disturbance present the potential jump in a steady 
flow in a canal is expressed in terms of (1) the effective volume (displaced volume and 
added mass/density of fluid) and (2) the depth Froude number for either a submerged 
body or a body with thin waterplane area. For a ship moving in a canal, the expression 
for potential jump contains a contribution from the line integral term along the inter- 
section between the ship hull and the free surface. When a pressure distribution is 
given on the free surface, the potential jump can be expressed explicitly in terms of 
the depth Froude number and the total pressure force, regardless of the shape of the 
pressure distribution. From the present relations, the added mass of a ship in steady 
motion in a canal is computed from the potential jump computed previously by the 
author for various Froude numbers. This added mass plays an essential role in the 
equation of motion initially when a sudden external force is applied to a steady moving 
ship. The present analysis is complimentary to that of Newman (1976) and the ex- 
tension of that to the three-dimensional case. As practical applications of the potential 
jump, which has had a limited interest, we proposed approximate formulas for speed 
correction and sinkage of a ship in a towing tank experiment. Also proposed is an 
approximate formula for the speed correction in a wind tunnel experiment. The present 
approximate formula is compared with ‘exact ’ numerical results obtained by the 
localized finite element method for both towing tank and wind tunnel experiments. 
The present speed correction formula is also compared with existing approximate 
formulas for a wind tunnel experiment. The present formulas compare favourably 
with the exact numerical results. 

1. Introduction 
The occurrence of blockage, or a jump in the velocity potential between upstream 

and downstream infinities, is well known for steady flow past a disturbance in a canal 
having a finite cross-sectional area. In  his analysis of the two-dimensional case with a 
free surface, Newman (1976) shows that the potential jump may be expressed in terms 
of the doublet strength and the depth Froude number, In  this paper we describe a 
different and simpler analysis, from which an expression for the potential jump for 
a general, three-dimensional disturbance is obtained; when the disturbance is due to 
a ship, the potential jump is expressed in terms of the effective volume (displaced 
volume and added mass/density), the depth Froude number, and a line integral 
term along the interface between the free surface and the ship hull. When the body 
is fully submerged, the line integral term disappears, and the potential jump is ex- 
pressed only in terms of the depth Froude number and the effective volume. From the 
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classical relation for an infinite fluid, by which the doublet strength is just the effective 
volume, the present analysis not only confirms the earlier result of Newman but also 
validates the classical relation when a free surface is present. The expression obtained 
is also valid as gravitational acceleration tends to  infinity, i.e. the free surface becomes 
rigid. Previously the potential jump in a free-surface flow was considered to  be of 
liriiited physical interest, except for its practical importance in the numerical solution 
of canal problems first noted by Bai (1975) and Chen & Mei (1975). Potential jumps 
were also discussed by Bai ( 1 9 7 8 ~ )  for two-dimensional hydrofoil problems and in 
Bai (1977) for three-dimensional problems. 

Blockage effects in wind tunnel tests have been recognized for a long time, and it 
has been routine practice to make theoretical blockage corrections to wind tunnel 
experimental data. Ship hydrodynamicists have subsequently investigated towing- 
tank blockage effects due to tank sidewalls and a finite depth bottom. 

Owing to  the difficulty encountered in computing flow separation, wake flow, free- 
surface effects, etc., the exact magnitude of the blockage effect on fluid force acting 
on a body is too complicated to analyse by purely theoretical means. However, these 
difficulties did not stop engineers from attempting to make simple engineering 
approximations of the blockage problem. For engineering purposes, computation of a 
mean-speed increment on a body owing to blockage effects has been the main focus 
of interest so as to make blockage correction to frictional drag. In  the computation, 
the incremented change in frictional drag owing to blockage is determined directly 
from the computed incremental increase of mean speed over the body surface caused 
by flow blockage. 

Two basic inviscid-flow theories have been previously employed. The first is based 
on the so-called, one-dimensional mean-flow theory, the Kreitner equation, which 
was first obtained by Kreitner (1934) using from Bernoulli and mass continuity 
equations under the assumption that velocity is uniform in each cross-sectional 
plane. To name a few, Hughes (1961) and Kim (1963) used this approach. 

The second, based on a successive reflexion of images in the walls of the rectangular 
tank or simpler axisymmetric singularitics in case of axisymmetric flows. I n  this 
approach, the velocity potential of the flow inside a specified tank boundary 
can be computed exactly in principle; usually, the potential is represented by a 
series expansion, and only the first few terms are computed. Ogiwara (1975)) 
Tamura (1972, 1975) and Landweber & Nakayama (1975) have used the latter 
approach. 

I n  all, there exist about a dozen formulas proposed for blockage corrections, and 
each is somewhat different from the other. Some formulas introduce empirical correc- 
tion factors, whereas others claim to be based on analytical derivations. Some for- 
mulas are proposed to be used only for frictional resistance corrections, whereas other 
formulas are used for total resistance corrections. An extensive review of the subject 
has been made by Gross & Watanabe (1972). 

The main objectives of the present paper are twofold: ( 1 )  to  obtain an expression 
for the potential jump in terms of the depth Froude number and the effective volume 
for free-surface flows in general, and (2) to obtain an approximate speed-correction 
formula and test the present approximate formulas. A comparison is made between 
the results obtained by the present approximate formulas and those obtained by 
exact numerical results. Numerical results are obtained by a localized finite element 
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method developed by Bai (1977). As a test of the present speed-correction formula, 
two cases are considered: (a )  the Wigley parabolic ship model, tested in both a small 
and a large towing tank, ( b )  a body of revolution (prolate spheroid) tested in a circular 
wind tunnel. I n  each, the mean-speed increment averaged over the entire body surface 
is computed by a three-dimensional, finite element method applicable to free-surface 
flow problems. These compare favourably with those obtained by the approximate 
speed-correction formula. Results are also compared to  those obtained by using the 
speed-correction formula of Lock and Johansen. The present formula renders a better 
approximation than that of Lock and Johansen when the cross-sectional areas of 
a flow tunnel is not much larger than the maximum cross-sectional area of the 
body. 

We will first consider steady, free-surface flow in three-dimensions to obtain an 
expression for the potential jump. The potential jump in the special case when the 
disturbance is specified on the canal boundary (and on the free surface) is given 
explicitly in terms of a non-homogeneous boundary condition. I n  3 3, as applications 
of the expression for the potential jump obtained in the present analysis, approximate 
formulas for the mean-speed correction on the body are proposed and compared with 
the 'exact ' mean-speed correction for both towing tank and wind tunnel experimental 
conditions. Also given is an approximate expression for additional sinkage of a ship 
which is due to the blockage effect in confined waterways. 

2. Mathematical analysis 
We consider here steady uniform flow past a fixed three-dimensional disturbance 

in a canal with rectangular, uniform cross-section. The co-ordinate system is right- 
handed and rectangular. The y axis is opposite to the force of gravity, and the x,z 
plane coincides with the undisturbed free surface. The bottom of the canal is in the 
y = - H plane; the side walls, in the z = b planes. The uniform flow comes from the 
negative x axis on the left-hand side. Surface tension is neglected and i t  is assumed 
that the fluid is inviscid and incompressible, and the motions are irrotational. I n  the 
following analysis, the two-dimensional case becomes a special case by taking the 
tank width ( 2 b )  as unit length and by assuming the disturbance is the same on all 
planes perpendicular to the z axis. 

The steady three-dimensional flow in a canal is described by a total velocity potential 

y, 2) = U(X + #@, y, z ) ) ,  (2 .1)  

where # is the perturbation potential normalized with respect to the uniform stream 
U. Then 

in the fluid domain D. 

linearized free-surface boundary condition, 

= V2# = 0 (2.2) 

It will be assumed that the free-surface disturbances are all small so that the 



436 

\ 
\ 

\ 
SlV \\ 

\ 
\ 
\ 

K. J .  Bai 

can be applied, where po(x, z )  is a specified non-zero pressure distribution applied over 
a portion of the free surface S,, S ,  is the free surface excluding S,, and p is the density 
of water. The boundary condition on the ship hull So is 

4, = -n1> (2.4) 

where n = (n,, n,, n3) is the unit normal vector outwards from the fluid. The boundary 
conditions on the bottom 8, and side walls S, of a canal are 

$ , = O  on SBuSW. (2.5) 

lim $ = 0 (2.6) 

lim $ = K+$(x,y,z) (2.7) 

As the radiation condition, we require that the potential behaves as 

z+-m 

on a plane S,, a t  the upstream infinity, i.e. x+  -a, and 

-+m 

on a plane S,, a t  the downstream infinity, where the constant K is the potential jump, 
and represents the free-wave term. Here 5 can be expressed as 

(2.8) 
- m coshp,(y+ H) nn 

2b 
4 = (a,cosk,x+b,sink,x)- COB - (Z - b), 

n=O coshp,H 

where a, and b, are 
roots of 

and 

zoefficients yet to be determined, and p, and kn are the positive 

If n 2 1, there is a L ngle solution for p, for each value of U2/gH. Where n = 0, there 
is one positive solution for po if W/gH < 1, but none if U21gH > 1.  

Let us apply Green's theorem to the functions x and $, defined in the fluid domain 
D and its boundary aD as shown in figure 1. We obtain 

(2.10) 
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where aD = 8, u 8, u 8 0  u 8, u 8, u 8 ~ 1  u 8 ~ 2 .  

Note that the relation (2.10) has been used also in Birkhoff (1950), Landweber (1956), 
Landweber & Yih (1956) and Yeung (1977). By substituting the proper boundary 
conditions for q5 given in (2.3) through (2.6). 

a U2 x$,,ds = 0. (2.11) 
+ ilss, Pods + SsS,, ” S, 

Integrating by parts, and using (2.7), (2.11) reduces to 

where is the intersection line between the free surface S, and the ship hull surface 
So, and where W = 2b is the width of the canal. Here the line integral along the closed 
contour I? is understood to proceed in the counter-clockwise direction when we look 
down at the free surface, i.e. dz < 0 around the stern and dz > 0 around the bow. In 

(2.12), the line integral along the boundary contour rp of S,, xPodz is eliminated 

by assuming Po = 0 on rP. If desired this line integral along rP may be included in 
the present analysis in a straightforward manner. Here x will be assumed to be finite 
at first and later will be taken in the lim x+ 00. By using the orthogonality relations 

+rp 

- -  
for q5, 

and 

( 2 . 1 3 ~ )  

(2.13 b)  

Equation (2.12) further reduces to 

where F H  = U / J g H  is the depth Froude number. (Note in (2.13) that the z integrals 
vanishforn # Oand theyintegralsvanishforn = O.)Equation (2.14) may berewritten 

K W H ( 1 - F i )  = V(l+m’)+-+- (#-x$,)dz, (2.15) 
in a form 

PS 9 r 

where V is the submerged volume of the ship hull under the free surface, the ‘added 
mass’ m and its coefficient m‘ are defined, respectively, by 

Fo U2f 

and 

( 2 . 1 6 ~ )  
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and Fo is the total pressure force applied on the free surface. The line integral in equa- 
tion (2.15) is similar to the line integral which is present in Green’s function formulation 
of the wave resistance problem. The contribution of the line integral to the potential 
jump requires careful analysis. If we restrict ourselves to thin ship hulls, we may 
assume the line integral contribution in (2.15) to be negligibly small. (Some discussion 
on the line integral has been given in Bai, 1977.) 

It is worthwhile to mention that the added mass defined by (2.16a) in the steady 
wave resistance formulation can be interpreted for two problems. First, when an 
external force F B ( t )  is suddenly applied to a ship moving with a constant velocity 
(where F is a constant, and R(t) is the Heaviside function) the acceleration (or de- 
cleration depending on the sign of F )  of the ship is given by F / p  V (  1 + m’) at t = + 0.t 
Second, the added mass defined in equation (2.16) can be interpreted as the surge 
added mass for the limiting case of zero-frequency harmonic surge motion of a body 
in an otherwise steady uniform stream. (Specifically, when ( T I /  U approaches zero, 
where (T is the frequency of surge motion, and 1 is an appropriate length scale.) Here, 
the boundary condition in the body is applied to the mean position of the body boun- 
dary as in the customary linear formulation. 

The result can be simplified for two-dimensional problems, by taking the canal width 

(2.17) 
w =  1, to  

KH( 1 - F&) = X( 1 +m’)  + -O+- [$ - $ 2 ~ ] g : ,  

where S is the submerged cross-sectional area, of the two-dimensional body and the 
contour integral along I? in equation (2.15) is reduced to two point values, if the body 
pierces the free surface. Here the intersection points x1 and x2 are the x co-ordinates 
of the free surface a t  the upstream and downstream ends of the body, respectively. 
Investigation of a surface-piercing body in two dimensions is beyond the scope of 
the present work since linearization of the free surface totally breaks down near the 
intersection points. 

If the body is submerged with no pressure distribution on the free surface, and if 
g tends to infinity, then equations (2.15) and (2.17) reduce to 

F U2 

PS 9 

K = ( l +m ‘ )  Y / A  (2.18) 

in three dimensions, where A = WH is the cross-sectional area of the canal, and 

K = ( l+m’)S /H (2.19) 

in two dimensions. Here ( 1  + m‘) Y and (1 + m’) S are the so-called effective volume and 
the effective area, respectively. Equation (2.19) has been discussed in Newman [1969, 
equation (3.4)] for the free surface becoming rigid. We will discuss (2.18) further when 
we consider the wind-tunnel blockage correction later. 

When the body is fully submerged or when the line integral can be ignored for a 
thin, surface-piercing ship without an imposed pressure distribution on the free sur- 
face, (2.15) and (2.17) can be reduced, respectively, to 

KA(1-F&) = (1-1-m‘) V (2.20) 

t Strictly speaking, a more complicated convolution intergal has t o  be computed for any 
t > 0 ; this problem has to be treated as an initial value problem such as considered by Wehausen 
(1964) and Calisal (1977). 
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in three dimensions and 
KH(i-F&) = ( l+m’)X (2.21) 

in two dimensions. I n  his analysis in two dimensions, Newman (1976) obtained the 
following expression for the potential jump. 

R H (  1 - F&) = 27rp, (2.22) 

where p is the doublet strength. By a straightforward extension of Newman’s analysis 
to the three-dimensional case, we obtain 

KA(1 -F&) = 47Tp (2.23) 

in three dimensions. From equations (2.20) and (2.23), for three dimensions 

1 +m‘ 
P = T  V .  

Similarly, from (2.21) and (2.22) 

x 1 +m’ p=- 
27T 

(2.24) 

(2.25) 

in two dimensions. 
The present analysis, which is simple and complimentary to Newman’s analysis, 

provides some physical understanding of the role of the added mass in the potential 
jump. It is of interest to note the relations (2.24) and (2.25) are the classical results in 
an infinite fluid. The relation (2.24) was discussed by Taylor (1928). More general 
cases of (2.24) in an infinite fluid without a free surface were discussed by Cummins 
(1953), Landweber (1956) and Landweber & Yih (1956). A neat derivation of (2.24) 
and (2.25) in an infinite fluid can also be found in Newman (1977, p. 143). From the 
present analysis it is shown that the classical relations in (2.24) and (2.25) are also 
valid when a free surface is present. 

When the hull boundary condition is applied on the centre-plane of the ship, which 
is the customary linearized hull boundary condition under the conventional thin-ship 
approximation, i.e. 

(2.26) 
a 

M X , Y ,  k 0) = f j - p , Y ) ,  

where the ship hull boundary is given by 

z f f(x, y) = 0. (2.27) 

Then the integral on the ship surface So in (2.14) reduces to 

= v, 
where the surface of integration C,,. is the positive side of the centre-plane of the 
ship ( z  = + 0), and the added mass term defined by the second integral on the right- 
hand side in equation (2.28) become trivially zero. I n  equation (2.28) the first term 
in the integral on the left-hand side reduces to  the displaced volume when either the 
exact hull condition or the linearized hull condition as shown previously is used. 
However, the second term in the same integral differs since this term becomes zero 
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Cases (a) Three dimensions (b) Two dimension 

1 

2 

V(1 +m‘) 
A( 1 -3’;) 

V 
A( 1 -3’;) 

S( I + m’) 
H (  1 -3’;) 

S 
H (  1 - 3’;) 

V(1 +m’) S( 1 + m’) 
A H 

S V 
A H 

3 

- - 4 

5 

Note. 1.  Line integral is negligibly small. 
2. 1 and m‘ are small, or body boundary condition is linearized. 
3. Gravity g approaches to infinity, e.g. wind-tunnel test. 
4. 3 and m’ are negligibly small, or body boundary condition is linearized. 
5. Pressure distribution on free surface is given. 

TABLE 1. A summary of expressions for potential jump K. 

for the linearized hull condition. From equations (2.14) and (2.28), we obtain for the 
linearized hull condition. 

K(1-F:) = V / A .  (2.29) 

Here, no pressure distribution is present, and the ship is assumed to move along the 
centre-line of the canal. 

An improved approximation of the added mass defined in (2.16) may be computed 
by invoking the original hull boundary 

(2.30) 

The added mass given by equation (2.30) for a thin ship can be interpreted as a higher 
order approximation than the zero added mass given by (2.28). 

The added mass in the expression for K in the present analysis is also trivially zero 
for a pressure distribution on the free surface. Notice that the value of K (  1 - l?&) 
remains constant for all Froude numbers; this was noticed in earlier numerical 
solutions for both two- and three-dimensional problems in Bai (1975, 1977, 1978a). If 
only a pressure distribution is present, (2.15) reduces to 

K ( l  -F&) = Fo/pgA. (2.31) 

Thus K depends only on the total pressure force and not on the shape of the distri- 
bution. Table I gives several cases and reduces from the general expressions (2.15) 
for three dimensions and (2.17) for two dimensions. 

The relation in (2.31) has been also observed in previous numerical solutions made 
by Bai (1975, 1977, 1978a). In  table 2 the values of K ( l  -F&) determined from (2.29) 
and (2.31) are compared with the numerical solutions for three dimensions given by 
Bai (1977). Here BL/ W H  = 1, and B and L are, respectively, the breadth and length 
of a rectangular pressure distribution with a constant value of Po. For a thin ship, B 
and T are, respectively, the beam and draft of the ship, where B/L  = 0-2, TIL  = 0.1, 
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1.6 ---. 
-\ --- +-,- 

\ ---- 
-/---- 

1.0 . 
c //- - 

E L 

- 

Numerical results Present formula 
Bai (1977) (2.29) or (2.31) 

Rectangular PolPgH POIPSAH = Po/PgH 
pressure 
distribution 

' - - 0.148 ... 
A H  27 

Thin ship 0.148 15 

TABLE 2. Comparisons of potential jump K(l -B'k)/H. 

= 4 , s  = nab. 

H/L = 0.3, ?V/L = 1, and the ship has a vertical wallsided parabolic hull. Table 2 shows 
excellent agreement for both a pressure distribution and a thin-ship approximation. 

By using the present results the added mass can easily be computed from the 
potential jump given by Bai (1975, 1978a) for two-dimensional cases and by Bai 
(1977) for three-dimensional cases. The added masses of a submerged circular cylinder 
in water of finite depth and an elliptical cylinder at a 30-degree angle of attack with 
zero circulation are given in figure 2. (A proof that the potential jumps are the same 
for a given body in either forward or reverse flow is given in Bai (1978a).) In  figure 2, 
h is the depth of submergence, i.e. the distance from the free surface to the centre of 
a circular cylinder of radius a or of an elliptic cylinder of major and minor radii, a 
and b ,  respectively. The angle of attack is measured from the negative x axis to the 
major radius. Figure 2 shows that the added mass of a submerged circular cylinder 
reaches a maximum at approximately FH = 0.275, whereas the added mass of an elliptic 
cylinder submerged in water of finite depth with 30-degree angle of attack reaches its 
maximum approximately at  FH = 0.5. The added mass coefficients for both bodies 
approach constant values asymptotically as the depth Froude number increases to 
FH = 1 .Table 3 gives the computed added mass coefficients ofa vertical-sided parabolic 
ship where the line integral is ignored in the computations. Note that the added mass co- 
efficient increases significantly as the length Froude number FL [ = U/(gL)*]  decreases. 
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FL 111’ 

0.53 0.0630 
0.50 0.0671 
0.475 0.0750 
0.45 0.0950 
0.425 0.1268 

TABLE 3. Added mass coefficient m’ of a parabolic ship for various Froude number 
computed by formula (2.20) (Ship geometry is given in Bai, 1977). 

3. Applications of potential jump 

finition of the velocity potential, it  can be written as 
Let us consider the potential jump defined in the previous section. From the de- 

where a$/as is the tangential velocity. When we integrate along a line parallel to the 
x axis, 

udx, (3.2) 
OD 

where 

Then the potential jump can be expressed as 

v4 = (u, 21, w). 

where by ‘mean’ under the bracket, it  is understood that the free-wave components 
are to be precipitated. The potential jump can also be interpreted as the integral of 
the velocity increment owing to the blockage. 

Blockage correction 

Many authors have proposed approximate formulas for blockage corrections due to 
sidewalls and bottom boundary effects of a towing tanks. The first attacks on this 
subject date back more than four decades. Two basic approaches have been em- 
ployed, one based on wind-tunnel correction; another, on a so-called mean-flow 
theory. There exist about a dozen formulas proposed for the blockage corrections; 
each different. Some formulas introduce empirical correction factors, and others 
claim to be based on analytical derivations. Some formulas are proposed to be used 
only for frictional resistance corrections, and others are used for total resistance 
corrections. An extensive review of this subject has been made by Gross & Watanabe 
(1972). 

Here, we propose a new speed-correction formula to be used when analysing the 
frictional resistance of the ship model in a towing tank. A major difference between 
the present derivation and past derivations of speed-correction formulas is that in 
the present analysis, the potential jump occurring in a three-dimensional formulation 
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Cases (a) Three dimensions 

V(1 +m') 
LA( 1 - F$) 

V 
LA( 1 - F$) 

V(l+m') 
LA 

1 

2 

3 

4 
V 

LA 
- 

( b )  Two dimensions 

S(1 +m') 
LH(l -FL)  

S 
LH( 1 - F;) 

S( 1 4- m') 
LH 
S 

LH 
- 

P o  4 
PSLA(1 -F$)  PSLH(1  --qA 5 

(See note in table 1 )  

TABLE 4. A summary of expressions for the mean-speed correction AZ. 

is used, whereas in the past, a one-dimensional, mean-flow theory or successive re- 
flexion of images was used. 

It is not easy to examine the local contribution to the potential jump, particularly 
when free waves are present. The potential jump K is the total speed increment in 
the x direction. As well as two-dimensional slender (or thin) bodies given in Bai 
(1975, 1977, 1 9 7 8 ~ ) )  numerical solutions for practical ship forms and pressure dis- 
tributions in three dimensions however, do indicate that major portion of the potential 
jump occurs along the hull length, especially for subcritical flow. 

This evidence is also found in the numerical results of a potential flow model for 
the wind tunnel experiments, which will be shown later. It is also shown analytically 
that the major portion of K is confined only along the body length in a simple analysis 
for wind tunnel flows; see in appendix A. However, similarly, the same evidence can 
also be shown analytically for towing tank flows. This fact, proved analytically for a 
simple model in appendix A as well as observed in the numerical results, will be used 
as the basis for obtaining the following approximate mean-speed correction (or 
increment due to blockage effects) 

Aii = K / L ,  (3 .4 )  

where L is the ship length. In  general, L need not be the body length but can be some 
characteristics length; for example, for a disk vertical to the stream, the body length 
is zero and therefore not an appropriate length. The previously defined speed-incre- 
ment formula can be used for either two- or three-dimensional cases with or without 
a free surface. By substituting the expressions for K in table 1 into (3 .4 ) ,  we obtain 
table 4 for a mean-speed-correction formula. 

Compare the present formula with blockage correction formulas obtained previously 
by using a simple mean-flow theory for a model towed in a tank. In this analysis, Hughes 
(1961) showed that an approximate formula for the speed correction was given by 

V 
Aii = 

LA(1 -F&- V/LA)'  (3 .5)  



444 K .  J .  Bai 

A similar formula which incorporated an empirical factor was also suggested by Kim 
(1963): 

(3.6) 
V 

where a was obtained from experimental data. 

different form, making use of the assumption hhat V / L A (  1 -F&) is small 

LA(1-PS-  V’ILA)’ 
AE = a 

To compare the present to the previous results, (3.5) may be written in a slightly 

In  his shallow water theory, Tuck (1967) obtained the local speed increment Au(x) 
for small values of W as 

where S(x )  is the cross-sectional area of the ship. Tuck also showed that his result 
agrees with the results of a crude hydraulic theory, also given in his paper. The mean- 
speed-correction formula obtained from the previously described crude hydraulic 
theory by integrating (3.8) along the ship length may be given as 

If the gravity goes to infinity, i.e. the case of a wind tunnel test, (3.9) further reduces 
to a crude mean flow theory as 

A Z =  VILA. (3.10) 

It should be noted that (3.9) and (3.10) are identical to the cases 2(a) and 4(a)  in 
table 4, where the added mass is assumed to be negligibly small. 

Two specific cases will now be considered as tests of mean-speed-correction formula: 
(1)  the Wigley parabolic ship model tested in both a small and large towing tank, 
using the three-dimensional formula of 2(a) table 4; (2) a body of revolution, i.e. 
prolate spheroid, tested in a circular wind tunnel with the three-dimensional formula 
of 3(a) in table 4. For comparison, the ‘exact’ mean-speed correction will also be 
computed from the numerical results obtained by the localized finite-element method 
developed by Bai (1977). We shall describe the ‘exact’ mean-speed correction a8 
follows. 

Exact mean-speed increment 

To test the new mean-speed-correction formula proposed in the previous section, it 
will be necessary to consider the ‘exact’ mean-speed increment averaged over the 
entire body surface. Let the total velocity potential Oo describe the same free-surface 
flows about the same body (or any sort of disturbance) described in $ 2  but in an 
infinite half space below the free surface, i.e. in the absence of the canal boundaries. 
Then we have, similar to (2.1), 

@‘o(x, Y, 2) = V ( X  + $ o @ ,  Y, 41, (3.11) 

where $, is the perturbation velocity potential in an unbounded fluid, normalized 
with respect to the uniform incoming stream U. 
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The fluid speed on a body surface, in general, increases due to the blockage effect 
when compared with that of unbounded fluid. However, the speed increment on the 
body surface is not uniform over the entire surface. For example, the forwarded 
stagnation point of an axisymmetric body remains the same whether in an unbounded 
fluid or in a wind tunnel of circular cross-section. Nevertheless, a mean-speed correc- 
tion has been traditionally employed for the blockage correction, mainly owing to its 
simplicity. To describe a mean-speed increment due to blockage locally on the body 
surface 

AU = V ( @ - Q 0 ) . 7 =  V ( # - # ~ ) . T ,  (3.12) 

where T = (r1,r2,r3) is a unit tangential vector on the body surface; r1 is the com- 
ponent along the x axis, i.e. the longitudinal direction, and r2 and r3 are, respectively, 
the normal and tangential components in cross-sectional plane of the body. Then the 
'exact ' mean-speed increment averaged over the entire submerged body surface is 

given by 4 P P  

A% = J JH0V($-$,) .Tds. (3.13) 

Where 8, is the wetted surface area, and T is specified. One natural way of specifying 
'F would be as the unit potential-flow streamline vector on the body. However, stream- 
lines on a body in bounded and unbounded flows, described by # and #o, respectively, 
do not coincide in general, except in the special case of an axisymmetric body in a 
flow facility of circular cross-section. For a ship hull, if T = ( 1 , 0 , 0 ) ,  and So = 2 L .  T 
under the assumption that the ship is sufficiently thin, (3,13) can be reduced to 

Aii = U - Go, 

where 

where L and T are the ship length and draft, respectively. Here the draft T is assumed 
to be uniform from the bow at x = -+L to the stern at x = 4L; the centre-plane of 
the ship is on z = 0. 

Similarly, for a slender axisymmetric body of revolution in a wind tunnel of circular 
cross-section, the mean-speed increment averaged over the body surface is given by 

A% = %-Tio  

(3.15) 

where R = (y2+9)*, 

and the peripheral length along a body meridian is approximated by the body length, 
assuming that the body is slender. 

In the following, to test of the present mean-speed-correction formula, two cases 
are specifically considered: (1) the Wigley parabolic ship model, tested in both a 
small and a large towing tank; (2) a body of revolution (prolate spheroid) tested in a 
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Small tank Large tank Extra large 
tank 

Width (m) 6.09 12-5 24 
Mean water depth (m) 3.555 6.268 12 

TABLE 5. Dimensions of small, large and extra large towing tanks. 

~ 

Exact numerical results from (3.14) Formula 2(a) of 

Aii 
r A 

5 table 4 

Small 0.017198 0.030514 0.0133 0.0128 
Large 0.017198 0.019425 0.0022 0.0029 

TABLE 6.  Comparisons of mean-speed increment, computed from 
numerical results and the present formula for FL = 0.4.* 

* Results of extra large tank were used to compute Ti,, as discussed in text. 

- - 
Tank 
size UO U Aii = Ti-?& 

circular wind tunnel. I n  each case the mean-speed increment averaged over the 
entire body surface is computed by a three-dimensional, finite element method applic- 
able to  free-surface flow problems. These are shown to compare favourably with those 
obtained by the approximate speed-correction formula. Results are also compared 
to those obtained by using the speed-correction formula of Lock and Johansen. The 
present formula renders a better approximation than that of Lock and Johansen 
when the cross-sectional area of a flow tunnel is not much larger than the maximum 
cross-sectional area of the body. 

Towing tank experiment 

To test the new blockage correction formula, three sets of computations were first 
made for the same ship in three different towing tanks. The first two tanks had the 
dimensions given by Tamura (1972, 1975); see table 5. The third tank was approxi- 
mately four times greater in cross-sectional area than the large tank, i.e. W = 24 m 
and H = 12 m. The specific ship model considered was the Wigley parabolic model 
(model Mi719 in Tamura) and the equation of the hull surface was given by where 
LIB = 10, and T I L  = 0-0625, and L = 8 m, 

(3.16) 

In  the computations, the ship hull boundary condition was linearized; thus, the 
three-dimensional speed-correction formula (case 2 ( a )  in table 4) was used. To test 
the present mean-speed-correction formula, computations were also made from (3.14); 
the exact mean-speed correction was averaged over the ship hull surface specifically, 
the centre-plane in this example) from the local velocities obtained by a localized 
finite element method of Bai (1977). I n  computing the values of Go from (3.14), the 
numerical result for the extra large tank was used in place of the perturbation potential 
for unbounded water, because the effect of the tank walls and bottom boundaries was 
found to be negligibly small through numerical experiments. Comparisons between 
the exact and approximate mean-speed corrections are given in table 6 .  Agreement 
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is reasonably good. I n  table 6 the exact mean speed averaged on the hull surface, ii,, 
defined by (4.14), is not only non-zero but also dependent on Froude number. 
The free-surface effect on the velocity profile on the body surface would, significantly, 
depend upon whether the ship model would be towed in a shallower towing tank or in 
unbounded water. The present study indicates that  the approximate speed-correction 
formula satisfactorily treats the seemingly complicated free-surface effect on the 
mean-speed correction on the body. 

Wind tunnel experiment 

As a second example, the blockage effect was considered for a wind tunnel having a 
uniform circular cross-section of R,. The specific body geometry considered was a 
prolate spheroid with its meridian profile given by 

x2 R2 s + p  = 1 (3.17) 

for the special case when alb  = 4. 
The potential flow for the axisymmetric boundary configurations considered herein 

could have been computed by the conventional method of integral equations; i.e. 
the axial source and doublet distributions or the vortex sheet on the surface, etc. as 
discussed in Landweber (1974). However, the velocity potential has been computed 
by the finite element method. Computations have been made for R,/b = 1.25, 1.5, 2, 
3, 4, 5, and 15 for a / b  = 4. IVhen R,/b = 15 was computed, the effect of the tunnel 
wall on the body surface was as negligibly small as if the body were moving in an 
infinite fluid. The value of Go, defined in (3.15), computed by using the result of 
R,/b = 15, was 0.08185, whereas that computed by using the exact analytical result 
for the unbounded water, i.e. R,/b = 00, given in Lamb (1932) was 0.08158. 

The computed velocity potential q5 is shown in figure 3 for B,/b = 1.25, 1.5, and 15. 
To illuminate the assumption made to  obtain the present approximate mean-speed 
correction, figure 3 shows straight lines drawn from the origin to the asymptotic 
values of $K a t  the downstream stagnation point x = gL.f The slope of each straight 
line is equal to  the speed correction defined by equation (3.4). Owing to the skew 
symmetry of $ with respect to  x = 0,  the result for the upstream half-body can be 
obtained from the downstream potential shown in figure 3. The normalized pertur- 
bation velocity potential increases monotonically from a value slightly lower than 
- &K a t  the upstream stagnation point to slightly higher than &h' a t  the downstream 
stagnation point on the body surface. However, the potentials a t  R = 1.25b approach 
monotonically almost the asymptotic values a t  both ends for R,/b = 1.25 and 

In table 7, the approximate mean-speed correction for three-dimensions given by 
3 (a )  in table 4 is compared with the exact mean-speed correction computed from (3.15). 
Also shown in table 7 are the approximate speed corrections given by (3.10) and by 
the Lock and Johansen formula which is given in Pope (1947) as 

R,/b = 1.5. 

3 
Aii = 2-391 (i) (3.18) 

t In this problem a slightly different form of the infinit,y conditions, (2.6) and (2.7), is used 
for simplicity: lim q5 = - 3 K ;  lim q5 = SIC. 

X+--a, -03 
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FIGURE 3. Velocity potential for a spheroid (alb = 4) in a wind tunnel with a circular cross 
section of radius R,. - , on body; ---, a t  R/b = 1.25; - * - ,  linear potential variation assumed 
in the present speed correction formula. (the slope is the speed correction). 

- R,/b U 

1.25 0.98204 
1.5 0.52285 
2 0.26702 
3 0.14442 
4 0.11088 
5 0.09748 

15 0.08185 

Exact Present Lock and 
numerical formula 3 (a) Johansen 

result in table 4 [equation (3.18)] 

1.224 19 0.90050 0.93965 
0.44129 0.47716 0.7 0 844 
0.18546 0.21559 0.29888 
0.06287 0,08505 0.08856 
0.02932 0.04624 0.03736 
0.01 593 0.02920 041913 

0.00320 0.0007 1 0.00030 

equation 

0.42667 
0.29630 
0.16667 
0.07407 
0.04167 
0.02ti67 
0.00296 

(3.1011 

TABLE 7. Comparisons of mean-speed increments on a spheroid in a wind tunnel computed by 
the present approximate speed correction formula and by a numerical method. (a, = 0.081557 
obtained by Lamb was used.) 

In  table 7, the comparisons show that results obtained by (3.10) and (3.18) give too 
low and too high values, respectively, while the present formula provides a better 
approximations when R,/b < 2. 

In figure 4, computed values of the added mass coefficient and the mean-speed 
correction Aiiz are shown as a function R,/b. It should be noted in figure 4 that for 
b/Ro > 0-765, the contribution of the added mass to the previously described mean- 
speed correction from table 4 is more dominant than that of the displaced volume, 
i.e. m' = m/pV > 1. This finding indicates that a crude correction formula given in 
(3.10)) based on only the local cross sectional area of the body using one-dimensional 
theory, may not always provide a good approximation of the mean-speed correction 
when the added mass coefficient is not small, i.e. when m' = Ofl) .  

Comparisons between the present formula and the exact numerical mean-speed 
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FIGURE 4. Added mass coefficient m’ and speed correction AG 
for a spheroid in a circular wind tunnel. 

correction are favourable. More details about applications can be found in Bai (1978 b ) .  
Further investigation is necessary to take into account other blockage corrections due 
to viscous effects such as flow separation and wake displacement thickness effects. 

Sinkage 

From the mean-speed increment given in (3.5)) we can obtain an approximate expres- 
sion for the additional sinkage 7 due bo blockage by using the linearized Bernoulli 
equation as 

u2 V (  1 + ml) 
,$I=--- 

9 LA(1-FS)’  

The sinkage can also be expressed in non-dimensional form by 

or 

(3.19) 

( 3 . 2 0 ~ )  

(3 .20b)  

One should note in the previous formula that if the tank width W increase inde- 
finitely, while the water depth H is kept finite, the additional sinkage due to any 
finite-bottom effect is zero compared to the unbounded water. However, the change 
in sinkage due to the finite (or shallow) bottom, compared with sinkage in unbounded 
water ( W = co, H = 00) is significant. This obvious discrepancy in the present formula 
is because the directly related to  the vertical component of the hull pressure force, 
thus the contribution to the sinkage is much more significant from the bottom than 
the sides of the ship. I n  other words, the vertical component of the normal vector on 
the ship hull surface plays the role of a weighting function in computing the sinkage 
correction; whereas, a mean-speed correction on the entire ship surface is used when 
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computing the blockage correction to the frictional drag. Therefore, the present 
sinkage correction formula has a limited validity, i.e. only when the local speed incre- 
ment along the girth line around each cross section of the ship is nearly uniform. 
This is physically the case when the tank width is approximately the same as the water 
depth. It should be noted that to obtain the sinkage correction, for example when the 
water depth is small while the width is infinite, the present formula should not be 
used. In this case, more detailed information concerning the local speed correction 
is necessary to compute the sinkage correction due to shallow water. 

The author is grateful to Mr Justin McCarthy for suggesting this topic and for his dis- 
cussions during the preparation of this paper. The author would, also, like to thank Pro- 
fessors L. Landweber and E. 0. Tuck for their valuable comments in the present paper. 
This research was supported by the Numerical Naval Hydrodynamics Program a t  the 
David W. Taylor Naval Ship Research and Development Center, Bethesda, Maryland. 

Appendix A 
In a simple analysis, using the eigenfunction expansions, it is shown that major 

portion of the potential jump does occur along the lengt'h of a slender body. For sim- 
plicity, a potential flow in an axisymmetric wind tunnel is considered. The wind tunnel 
has a uniform circular cross of radius R,, and the testing body is also assumed to be 
axisymmetric with the body length L and the maximum radius b. Further, we assume 
that the testing body is long and slender and the tunnel radius is comparable to the 
maximum body radius b,  that is, LIR, 1. It should be noted that if L/R, < 1, then 
the blockage effect would be negligibly small; therefore, we rule out this case. 

First, let us introduce a fictitious plane surface vertical to the x axis at  the location 
barely touching the rear stagnation on the body. Otherwise, the testing body does 
not intersect with this fictitious plane. Here the uniform stream is from x = - co to 
x = co, letting the intersection point of the x-axis and the fictitious plane, i.e. disk, 
be the origin, i.e. x = 0 and R = 0. The perturbation potential has to satisfy Laplace's 
equation in the fluid and homogeneous Neumann condition on the tunnel wall R = R,, 
and the potential approaches to a constant, C, (which will be determined later) as 
x-+co. The proper junction condition has to be satisfied on the fictitious plane (i.e. 
x = 0) later. We can express the general solution of the perturbation potential $ in 
a half-infinite subdomain R < R, and x 2 0 as 

(A 1) 

(A 2) 

m 

i = O  
$(x, R)  = Ci J,(A,R) exp ( -  ,.tix) in R 6 R, and x B 0, 

where the infinite discrete eigenvalues hi, i = 0, 1 ,2 ,  . . . , are defined by 

Jl(hi R,) = 0 
and Ci is t'he coefficient to be determined by imposing a proper juncture condition on 
the plane x = 0. Here J, and J1 are the Bessel function of the first' kind of order 0 and 
1, respectively. The first few eigenvalues hi in equation (A 2) are given as 

1 A, R, = 0, 

hlRo = 3.832, 

h,R, = 7.016. 
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TO show analytically that the major portion of the potential jump occurs along the 
length of the body, it suffices to show that the value of the potential, approaches ex- 
ponentially fast to a constant C, along the x axis (x > 0 ) ,  then it suffices to examine 
only the slowest decaying term in equation (A 1). Under the assumption made 
earlier, we can examine a specific case, for example, if L/R,= 30, then the slowest 
decaying term, i.e. i = 1, in equation (A 1), becomes 

GIJ,(AIR)exp (- = C,J,(h,R)exp ( -  114-96x/L). (A 4) 

In this example, it can be seen that a t  x = 0.03 L the slowest decaying term already 
decays to  3 per cent of the value C,J,(h, R) at x = 0. It should also be noted that the 
potential approaches to a constant, C,, much faster since the rest of the terms (i > 1 )  
decay much faster than the second term (i = 1) in equation (A 1) .  One may obtain 
the same result near the front stagnation point simply by reversing the flow in the 
previously results . 

However, the present simple analysis fails, if L/R, is not very large. When LIR, 
is not, very large, the Green’s function would seem to be another alternative. However, 
by examining a simple point source and a sink with the same strength located along 
the centre-line R = 0 in a circular tube given in Landweber (1974), it is difficult to 
obtain the previous results analytically unless a numerical computation is involved 
for computing integral expression for a point source given in terms of the modified 
Bessel function of the second kind. 

For a more general case of free-surface flows in a canal, one may examine exponen- 
tially-decaying behaviour in the local disturbance both upstream and downstream, in 
a similar manner. 
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